Covariance-regularized regression and classification for high-dimensional problems.

نویسندگان

  • Daniela M Witten
  • Robert Tibshirani
چکیده

In recent years, many methods have been developed for regression in high-dimensional settings. We propose covariance-regularized regression, a family of methods that use a shrunken estimate of the inverse covariance matrix of the features in order to achieve superior prediction. An estimate of the inverse covariance matrix is obtained by maximizing its log likelihood, under a multivariate normal model, subject to a constraint on its elements; this estimate is then used to estimate coefficients for the regression of the response onto the features. We show that ridge regression, the lasso, and the elastic net are special cases of covariance-regularized regression, and we demonstrate that certain previously unexplored forms of covariance-regularized regression can outperform existing methods in a range of situations. The covariance-regularized regression framework is extended to generalized linear models and linear discriminant analysis, and is used to analyze gene expression data sets with multiple class and survival outcomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized Covariance Estimators for Hyperspectral Data Classification and Its Application to Feature Extraction

The main purpose of this work is to find an improved regularized covariance estimator of each class with the advantages of LOOC, and BLOOC, which are useful for high dimensional pattern recognition problems. The searching ranges of LOOC and BLOOC are between the linear combinations of three pair covariance estimators. The first proposed covariance estimator (Mixed-LOOC1) extended the searching ...

متن کامل

A multilevel framework for sparse optimization with application to inverse covariance estimation and logistic regression

Solving l1 regularized optimization problems is common in the fields of computational biology, signal processing and machine learning. Such l1 regularization is utilized to find sparse minimizers of convex functions. A well-known example is the LASSO problem, where the l1 norm regularizes a quadratic function. A multilevel framework is presented for solving such l1 regularized sparse optimizati...

متن کامل

Covariance Regularization for Supervised Learning in High Dimensions

This paper studies the effect of covariance regularization for classification of high-dimensional data. This is done by fitting a mixture of Gaussians with a regularized covariance matrix to each class. Three data sets are chosen to suggest the results are applicable to any domain with high-dimensional data. The regularization needs of the data when pre-processed using the dimensionality reduct...

متن کامل

A new approach to Cholesky-based covariance regularization in high dimensions

In this paper we propose a new regression interpretation of the Cholesky factor of the covariance matrix, as opposed to the well-known regression interpretation of the Cholesky factor of the inverse covariance, which leads to a new class of regularized covariance estimators suitable for high-dimensional problems. Regularizing the Cholesky factor of the covariance via this regression interpretat...

متن کامل

Computation of Regularized Linear Discriminant Analysis

This paper is focused on regularized versions of classification analysis and their computation for high-dimensional data. A variety of regularized classification methods has been proposed and we critically discuss their computational aspects. We formulate several new algorithms for shrinkage linear discriminant analysis, which exploits a shrinkage covariance matrix estimator towards a regular t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Statistical Society. Series B, Statistical methodology

دوره 71 3  شماره 

صفحات  -

تاریخ انتشار 2009